Menu



An electrical device which accelerates charged atomic or subatomic particles to high energies. The particles may be charged either positively or negatively. If subatomic, the particles are usually electrons or protons and, if atomic, they are charged ions of various elements and their isotopes throughout the entire periodic table of the elements.
 
What is a Particle Accelerator
The Compact Muon Solenoid detector at the Large Hadron Collider, near Geneva, underwent winter maintenance work on Jan 12, 2009. CERN (the European Organization for Nuclear Research) developed the particle accelerator.(Image: www.csmonitor.com)
Accelerators that produce various subatomic particles at high intensity have many practical applications in industry and medicine as well as in basic research. Electrostatic generators, pulse transformer sets, cyclotrons, and electron linear accelerators are used to produce high levels of various kinds of radiation that in turn can be used to polymerize plastics, provide bacterial sterilization without heating, and manufacture radioisotopes which are utilized in industry and medicine for direct treatment of some illnesses as well as research. They can also be used to provide high-intensity beams of protons, neutrons, heavy ions, pi mesons, or x-rays that are used for cancer therapy and research.
 
The x-rays used in industry are usually produced by arranging for accelerated electrons to strike a solid target. However, with the advent of electron synchrotron storage rings that produce x-rays in the form of synchrotron radiation, many new industrial applications of these x-rays have been realized, especially in the field of solid-state microchip fabrication and medical diagnostics.

Particle accelerators fall into two general classes—electrostatic accelerators that provide a steady dc potential, and varieties of accelerators that employ various combinations of time-varying electric and magnetic fields.

Electrostatic accelerators
 
Electrostatic accelerators in the simplest form accelerate the charged particle either from the source of high voltage to ground potential or from ground potential to the source of high voltage. All particle accelerations are carried out inside an evacuated tube so that the accelerated particles do not collide with air molecules or atoms and may follow trajectories characterized specifically by the electric fields utilized for the acceleration. The maximum energy available from this kind of accelerator is limited by the ability of the evacuated tube to withstand some maximum high voltage.

Time-varying field accelerators. In contrast to the highvoltage- type accelerator which accelerates particles in a continuous stream through a continuously maintained increasing potential, the time-varying accelerators must necessarily accelerate particles in small discrete groups or bunches.
 
An accelerator that varies only in electric field and does not use any magnetic guide or turning field is customarily referred to as a linear accelerator or linac. In the simplest version of this kind of accelerator, the electrodes that are used to attract and accelerate the particles are connected to a radio-frequency (rf) power supply or oscillator so that alternate electrodes are of opposite polarity. In this way, each successive gap between adjacent electrodes is alternately accelerating and decelerating. If these acceleration gaps are appropriately spaced to accommodate the increasing velocity of the accelerated particle, the frequency can be adjusted so that the particle bunches are always experiencing an accelerating electric field as they cross each successive gap. In this way, modest voltages can be used to accelerate bunches of particles indefinitely, limited only by the physical length of the accelerator construction.

All conventional (but not superconducting) research linacs usually are operated in a pulsed mode because of the extremely high rf power necessary for their operation. The pulsed operation can then be adjusted so that the duty cycle or amount of time actually on at full power averages to a value that is reasonable in cost and practical for cooling. This necessarily limited duty cycle in turn limits the kinds of research that are possible with linacs; however, they are extremely useful (and universally used) as pulsed high-current injectors for all electron and proton synchrotron ring accelerators. Superconducting linear accelerators have been constructed that are used to accelerate electrons and also to boost the energy of heavy ions injected from electrostatic machines. These linacs can easily operate in the continuouswave (cw) rather than pulsed mode, because the rf power losses
are only a few watts.
 
The Continuous Electron Beam Accelerator Facility (CEBAF) uses two 400-MeV superconducting linacs to repeatedly accelerate electrons around a racetrack-like arrangement where the two linacs are on the opposite straight sides of the racetrack and the circular ends are a series of recirculation bending magnets, a different set for each of five passes through the two linacs in succession. The continuous electron beam then receives a 400-MeV acceleration on each straight side or 0.8 GeV per turn, and is accelerated to a final energy of 4 GeV in five turns and extracted for use in experiments. The superconducting linacs allow for continuous acceleration and hence a continuous beam rather than a pulsed beam. This makes possible many fundamental nuclear and quark structure measurements that are impossible with the pulsed electron beams from conventional electron linacs. 
 
As accelerators are carried to higher energy, a linac eventually reaches some practical construction limit because of length. This problem of extreme length can be circumvented conveniently by accelerating the particles in a circular path maintained by either static or time-varying magnetic fields. Accelerators utilizing steady magnetic fields as guide paths are usually referred to as cyclotrons or synchrocyclotrons, and are arranged to provide a steady magnetic field over relatively large areas that allow the particles to travel in an increasing spiral orbit of gradually increasing size as they increase in energy.

Practical limitations of magnet construction and cost have kept the size of circular proton accelerators with static magnetic fields to the vicinity of 100 to 1000 MeV. For even higher energies, up to 400 GeV per nucleon in the largest conventional (not superconducting) proton synchrotron in operation, it is necessary to vary the magnetic field as well as the electric field in time. In this way the magnetic field can be of a minimal practical size, which is still quite extensive for a 980-GeV accelerator (6500 ft or 2000min diameter). This circular magnetic containment region, or “racetrack,” is injected with relatively low-energy particles that can coast around the magnetic ring when it is at minimum field strength. The magnetic field is then gradually increased to stay in step with the higher magnetic rigidity of the particles as they are gradually accelerated with a time-varying electric field.

Superconducting magnets
 
The study of the fundamental structure of nature and all associated basic research require an ever increasing energy in order to allow finer and finer measurements on the basic structure of matter. Since the voltage-varying and magnetic-field-varying accelerators also have limits to their maximum size in terms of cost and practical construction problems, the only way to increase particle energies even further is to provide higher-varying magnetic fields through superconducting magnet technology, which can extend electromagnetic capability by a factor of 4 to 5. Large superconducting cyclotrons and superconducting synchrotrons are in operation.
 
Storage rings
 
Beyond the limit just described, the only other possibility is to accelerate particles in opposite directions and arrange for them to collide at certain selected intersection regions around the accelerator. The main technical problem is to provide adequate numbers of particles in the two colliding beams so that the probability of a collision is moderately high. Such storage ring facilities are in operation for both electrons and protons.
 
Besides storing the particles in circular orbits, the rings can operate initially as synchrotrons and accelerate lower-energy injected particles to much higher energies and then store them for interaction studies at the beam interaction points.
 
Large proton synchrotrons have been used as storage-ring colliders by accelerating and storing protons in one direction around the ring while accelerating and storing antiprotons (negative charge) in the opposite direction. The proton and antiproton beams are carefully programmed to be in different orbits as they circulate in opposite directions and to collide only when their orbits cross at selected points around the ring where experiments are located. The antiprotons are produced by high-energy proton collisions with a target, collected, stored, cooled, and eventually injected back into the synchrotron as an antiproton beam.

Electron-positron synchrotron accelerator storage rings have been in operation for many years in the basic study of particle physics, with energies ranging from 2 GeV + 2 GeV to 104 GeV+104 GeV. The by-product synchrotron radiation from many of these machines is used in numerous applications. However, the synchrotron radiation loss forces the machine design to larger and larger diameters, characterized by the Large Electron
 
Positron Storage Ring (LEP) at CERN, near Geneva, Switzerland (closed down in 2000), which was 17 mi (27 km) in circumference. Conventional rf cavities enable electron-positron acceleration only up to 50–70 GeV (limited by synchrotron radiation loss) while higher energies of 100–150 GeV require superconducting cavities.
 
Advanced linacs
 
Although circular machines with varying magnetic fields have been developed because linacs of comparable performance would be too long (many miles), developments in linac design and utilization of powerful laser properties may result in a return to linacs that will outperform present ring machines at much lower cost. As a first example, the 20-GeV electron linac at Stanford University, Palo Alto, California, has been modified to provide simultaneous acceleration of positrons and electrons to energies as high as 50 GeV, while operating in what is called the SLED mode. After acceleration the electrons and positrons are separated by a magnet, and the two beams are magnetically directed around the opposite sides of a circle so that they collide at one intersection point approximately along a diameter extending from the end of the linac across the circle. This collider arrangement is much less expensive than the 17-mi (27-km) ring at CERN and provides electron-positron collisions of comparable energies but at lower intensities.








0 comments:

Post a Comment

Share your views or discuss.

 
Top