In this thesis, a special reinforced concrete shear wall building was designed per ASCE 7-05, and then the performance was investigated using the four analysis procedures outlined in ASCE 41-06. The proposed building was planned as a 6-story office building in San Francisco, CA. The structural system consisted of a two-way flat plate and reinforced concrete columns for gravity loads and slender structural walls for seismic loads. The mathematical building models utilized recommendations from ASCE 41-06 and first-principle mechanics. Moment-curvature analysis and fiber cross-section elements were used in developing the computer models for the nonlinear procedures.
The results for the analysis procedures showed that the building met the Basic Safety Objective as defined in ASCE 41-06. The performance levels for the nonlinear procedures showed better building performance than for the linear procedures. This paper addresses previously found data for similar studies which used steel special moment frames, special concentric braced frames, and buckling restrained braced frames for their primary lateral systems. The results showcase expected seismic performance levels for a commercial office building designed in a high seismicity region with varying structural systems and when using different analysis procedures.
Download
zhuo20160806\
ReplyDeleteray ban sunglasses discount
yeezy boost 350
ugg boots
ugg boots canada
cheap oakley sunglasses
pandora outlet
michael kors handbags
michael kors handbags
cheap jordans
discount oakley sunglasses
coach factory outlet
coach outlet store online
prada handbags
north face jackets
converse uk
true religion outlet
coach outlet store
lacoste shoes
ray ban sunglasses
louboutin pas cher
christian louboutin outlet
dolce and gabbana outlet
air max 90
red bottom shoes
michael kors outlet clearance
ghd hair straighteners
coach outlet
hugo boss outlet
michael kors outlet clearance
christian louboutin
rolex replica watches
michael kors handbags
polo ralph lauren
as