3D printing Aerodynamic engineering Aeronautical engineering Aeronautical engineering books Airports Architecture Artificial intelligence Automobiles Blast Resistant Design Books Bridges Building Codes Cabin Systems Civil Engineering Codes Concrete Conferences Construction Management Construction Materials Cooling Cryptocurrency Dams Do it Yourself Docks and Harbours Downloads Earthquake Engineering Electronics Engineering Engines Environmental Design & Construction Environmental Engineering Estimation Fluid Mechanics Fluid Mechanics Books Formwork design foundation engineering General Geotech Books Geotechnical Engineering Global Positioning System HVAC Hydraulics Hydraulics Books Hydro Power Hydrology Irrigation Engineering Machinery Magazines Management Books Masonry Mechanical Engineering Mechanics Mechanics Books Miscellaneous Books Modern Steel Construction Nanotechnology Natural Hazards Network Security Engineer Networking Systems News Noise and Attenuation Nuclear Engineering Nuclear Hazards to Buildings Pavement Design Prestressed Concrete Project Management Project Management Books Quantity Survey Quantity Survey Books railways RCC Structural Designing Remote Sensing Remote Sensing and GIS Books Renewable Energy Reports Resume Roads scholarships Smart devices Software Software Engineering Soil Mechanics Solar Energy Special Concrete Spreadsheets Steel Steel Spreadsheets Structural Analyses structures Structures Books Surveying Surveying Books Testing Thermodynamics Thesis Transportation Books Transportation Engineering Tunnel Engineering Wind Energy Zero Energy Buildings

Allowable Stress

If a member is loaded beyond its ultimate stress, it will fail or rupture. In engineering structures, it is essential that the structure not fail. Thus, the design is based on some lower value called allowable stress or design stress. If, for example, a certain type of steel is known to have an ultimate strength of 110,000 psi, a lower allowable stress would be used for design, say 55,000 psi. This allowable stress would allow only half the load the ultimate stress would allow. Allowable stress values are different for different materials, and they are tabulated and recommended by the International Building Code Association.
The ratio of the ultimate stress to the allowable stress is known as the factor of safety.

factor of safety = ultimate strength / allowable stress
Allowable Stress
Image courtesy: http://www.smpes.com
Determine the required size for a steel rod to support a tensile load of 50,000 lb if the allowable tensile stress of the steel is 25, 000 psi.

σ = F/A
A = F/σ = 50, 000lb/25, 000psi = 2in2
A = πD2/4 = 2in2
Solving for D, we have:
D = 1.6 in

Author Name


Contact Form


Email *

Message *

Powered by Blogger.